ZrC 和 ZrB₂掺杂对 PIT 法制备 MgB₂带材的影响

马衍伟 高召顺

(中国科学院电工研究所, 北京 100080. E-mail: ywma@mail.iee.ac.cn)

摘要 采用 ZrC 和 ZrB₂掺杂在常压条件下制备了 MgB₂/Fe 超导带材.利用 X 射线衍射、扫描电子显微 镜、电测和磁测等手段,重点研究了 ZrC 和 ZrB₂掺杂对超导带材组织和性能的不同影响.结果显示, ZrC 掺杂导致带材临界电流密度的降低,临界转变温度保持不变; ZrB₂掺杂则显著提高了带材高场下的临界 电流密度,而临界转变温度略微下降了 0.5 K.实验结果表明,采用 ZrB₂掺杂原位 PIT 技术可制备出具 有高临界电流密度的 MgB₂带材.

关键词 MgB2 超导线材 粉末套管法 临界电流密度 掺杂

自从临界温度高达 39 K 的新型超导体 M_gB_2 发 现以来^[1],科研人员进行了大量深入的研究以提高其 超导性能. 然而由于缺少有效的钉扎中心, MgB_2 临 界电流密度(J_c)随着磁场强度的增加而急剧地减小, 成为限制 M_{gB_2} 材料应用的关键因素. 因此, 人们采 用粒子辐照、热等静压和化学掺杂等方法来提高 MgB_2 的高场下 J₂特性, 而化学掺杂由于具有更简便 快速及可进行均匀改性等特点,成为目前改善 MgB₂ 超导性能的最有效方法^[2~6].实验研究已经证实,掺 杂 Zr 和 C 元素可以有效提高 MgB_2 的不可逆场(Hirr) $n_{J_{c}}$ 特性,这主要是由于掺杂 Zr 和 C 可以提高材料 的密度, 增强材料的磁通钉扎能力^[2,4]. 过渡金属化 合物 ZrC 和 ZrB,作为一种先进陶瓷材料在高温耐磨、 抗氧化及耐腐蚀方面有潜在的应用价值, 它们具有 良好的导热和导电性^[7].本工作的主要目的是研究 ZrC和 ZrB_2 掺杂对 MgB_2 成相、微观结构以及 J_2 性 能的影响. 通过研究发现, ZrC和 ZrB_2 对 MgB_2 带材 的性能有着截然不同的影响.

1 实验

实验原料为摩尔比为1:2的 Mg 粉(325 目, 99.8%) 和 B 粉(325 目, 99.99%),与原子百分比为5%的 ZrC 或 ZrB₂ 粉末(2~5 μ m)均匀混合. 然后将粉末装入外 径为6 mm,壁厚为1.25 mm 的铁包套管中,先经孔 型轧机加工成方形棒,再平辊轧制成截面为4 mm×0.5 mm 的带材,详细制备方法请参见文献[5]. 最后在氩气保护下600 烧结1h得到最终样品.

采用 X 射线衍射(XRD)仪对材料进行相分析,用 扫描电子显微镜(SEM)对样品的微观结构进行分析. 在 4.2 K 下采用标准四引线法测量样品临界电流密度 和磁场的关系,失超判据为 1 μV/cm,测量过程中所 加磁场方向平行于带材的表面.为验证结果的重复 性,我们对每种样品同时测量了多个样品.

2 结果与讨论

图 1 分别为未掺杂、掺 ZrC 和掺 ZrB₂ 带材的 XRD 谱. 从图中我们可以看到, 未掺杂样品几乎是 单相的 MgB₂, Fe 的衍射峰源于铁包套材料. 从掺 ZrC 和 ZrB₂样品的 XRD 中可以看到较强的 ZrC 和 ZrB₂ 衍射峰, 这意味着在 600 时 MgB₂和 ZrC 及 ZrB₂并

图 1 未掺杂(a)、掺 ZrC(b)和掺 ZrB₂(c)带材的 XRD 谱

没有发生明显的反应. 由于重元素 Zr 较强的 X 射线 散射因子, 造成 MgB_2 衍射强度比掺杂原子百分比 5%的 ZrC 和 ZrB₂的衍射强度还要弱.

图 2 是未掺杂、掺 ZrC 和掺 ZrB₂ 样品典型的 SEM 照片.对比掺杂与未掺杂样品,从高倍照片上 并没观察到 MgB₂ 晶粒大小的差异,对所有样品,平 均晶粒尺寸约为 0.2 μ m.图 2(c)和(d)为 ZrC 掺杂带材 的 SEM 照片,可以很明显地看到许多大小约为 2 μ m 的颗粒分布在 MgB₂基体上,X 射线能谱(EDX)分析 证实这些颗粒为 ZrC,这与 ZrC 原料的晶粒大小是一 致的.相反,在 ZrB₂ 掺杂带材中没有观察到如此大 的颗粒.图 3 为 ZrB₂掺杂样品的 EDX 分析结果,在 MgB₂晶粒中观测到了 Zr 的存在,这说明 ZrB₂可以有 效地掺入到 MgB₂ 中去.并且相对于未掺杂样品,掺 ZrB₂ 带材具有较少的孔洞和更高的密度,这可以明 显地增强 MgB2晶粒间的耦合效应^[5].

图 4 是利用磁化率方法测得的掺杂与未掺杂样 品的超导转变温度. 从图中可以看出, 纯的和 ZrC 掺 杂样品具有相同的超导起始转变温度(T_c = 35.7 K), 尽管后者样品中含有大量 ZrC 粒子, 其转变曲线反而 更陡峭. 相反地, ZrB₂掺杂样品的超导转变温度下降 到 35.2 K, 这也从另一方面证明了已有部分 ZrB₂掺 入到了 MgB₂ 结构中. 而对于 ZrC 掺杂样品, 由于 ZrC 很难进入到 MgB₂ 晶格中去, 所以其 T_c 并没有发 生变化.

我们利用四引线法测量了样品的临界电流密度 随外加磁场变化的特性关系.图5为4.2 K 下未掺杂 和掺杂样品的*J*_c-B关系曲线.图中显示ZrC掺杂样品 在磁场下的*J*。值要比未掺杂样品的略低.而对于 ZrB₂掺杂样品可以看到,磁场下的*J*。得到了明显的

图 5 4.2 K 下未掺杂和掺杂样品的 J_c-B 关系曲线

B/T

提高, J_c 的提高主要是由于改善了样品的致密度, 这 一点从 SEM 照片中可以看出. 应当指出的是, ZrB₂ 掺杂具有致密化效应, ZrB₂掺入 ZrC 中烧结可以降低 产物的孔洞率^[7]. 高致密度的 MgB₂ 样品具有更高的 超导均匀性并能承载更大的晶界电流,这已经被磁 光效应的实验所证实^[8]. 显然,我们的 ZrB_2 掺杂样品 在磁场中直到 12 T 仍具有很高的 J_c ,进一步证实了 这一观点.而对于 ZrC掺杂样品,其 J_c 值比未掺杂样 品还要低.尽管 ZrC掺杂样品比未掺杂样品更致密, 但是由于大的 ZrC颗粒存在于 MgB_2 中,阻碍了晶粒 间的电流通道,导致 ZrC掺杂样品的 J_c 降低.

论文

有文献报道称一些掺杂可以改善MgB₂的织构程度,同时提高样品的 J_c和不可逆场^[9].由于 MgB₂材 料本身具有轻微的各向异性,制备具有织构化结构 的样品也是提高 MgB₂超导体 J_c的一种有效方法.因此,可以通过改善样品的微观结构和优化掺杂比例 进一步提高 ZrB₂掺杂样品的临界电流密度.

3 结论

通过研究发现, ZrB₂掺杂可以显著提高 MgB₂带 材磁场下的临界电流密度,而 ZrC 掺杂导致临界电流 密度的降低.这两种不同的结果可以归因于 ZrC 和 ZrB₂掺杂对 MgB₂微观结构的不同影响.研究结果表 明, ZrB₂掺杂的 MgB₂带材有希望大规模实用化.

致谢 感谢日本筑波国立材料研究所 Kumakura H 和 Matsumoto A 给予的帮助. 本工作为国家自然科学基金(批 准号: 50472063)资助项目.

参考文献

- Nagamatsu J, Nakagawa N, Muranka T, et al. Superconductivity at 39 K in magnesium diboride. Nature, 2001, 410: 63—64
- 2 Fu B Q, Feng Y, Yan G, et al. High critical current density in Ti-doped MgB₂/Cu/Ta tape by powder-in-tube process. J Appl Phys, 2002, 92: 7341-7344
- 3 Dou S X, Horvat J, Soltanian S, et al. Transport critical current density in Fe-sheathed nano-SiC doped MgB₂ wires. Supercond Sci Techn, 2004, 17: 717—720
- 4 Zhao Y, Cheng C H, Rui X F, et al. Improved irreversibility behavior and critical current density in MgB₂-diamond nanocomposites. Appl Phys Lett, 2003, 83: 2916–2918
- 5 Ma Y W, Kumakura H, Matsumoto A, et al. Microstucture and high critical current density of in situ processed MgB₂ tapes made by WSi₂ and ZrSi₂ doping. Appl Phys Lett, 2003, 83: 1181–1183
- 6 Ma Y W, Zhang X, Xu A, et al. The effect of ZrSi₂ and SiC doping on the microstructure and J_c-B properties of PIT processed MgB₂ tapes. Supercond Sci Techn, 2006, 19: 133–137
- Kim K H, Shim K B. The effect of lanthanum on the fabrication of ZrB₂-ZrC composites by spark plasma sintering. Mater Charact, 2003, 50: 31-37
- 8 Shields T C, Kawano K, Holdom D, et al. Microstructure and superconducting properties of hot isostatically pressed MgB₂. Supercond Sci Techn, 2002, 15: 202–205
- 9 Narozhnyi V N, Fuchs G, Handstein A, et al. Comparative study of dense bulk MgB₂ materials prepared by different methods. J Supercond, 2002, 15: 599–601

(2005-12-12 收稿, 2006-04-13 接受)